
JOURNAL OF SIMULATION, VOL. 5, NO. 2, May 2017                                                                                                                   19 

©  ACADEMIC PUBLISHING HOUSE 

Unconditionally Stable Current Density 

Convolution Crank–Nicolson Finite-Difference 

Time-Domain Implementation for Anisotropic 

Magnetized Plasma 
 

Jianxiong Li 
School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China 

Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin, China 

Email: lijianxiong@tjpu.edu.cn 

 

Yongjia Zhuang 
School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China 

Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, Tianjin, China 

 

 

 
Abstract—An effective unconditionally stable 

implementation of the current density convolution Crank–

Nicolson finite-difference time-domain (JEC-CN-FDTD) 

method for anisotropic magnetized plasma is proposed. The 

JEC-CN-FDTD method for isotropic dispersive media 

greatly improves efficiency and retains its accuracy. This 

paper extends this approach to anisotropic magnetized 

plasma. This method not only solves the problem that 

incorporates both anisotropy and frequency dispersion at 

the same time, but also eliminates the Courant–Friedrich–

Levy (CFL) stability constraint. A numerical example has 

been carried out to validate the proposed formulations in 

one dimension of electromagnetic wave through anisotropic 

magnetized plasma slab. The results prove that the 

proposed formulations significantly save time and perform 

stably with acceptable accuracy. 

 

Index Terms—Crank–Nicolson difference scheme (CN), 

current density convolution (JEC), finite-difference time-

domain (FDTD), magnetized plasma 

 

I.  INTRODUCTION 

The finite-different time-domain (FDTD) method is 

one of the most popular methods for the solution of 

problems in analysis and design of electromagnetic 

propagation, microwave structures, and many other 

engineering applications. Over the past years, the FDTD 

method has been widely used to simulate dispersive 

media including the anisotropic magnetized plasma 

media [1]. However, the conventional FDTD method is 

conditionally stable, namely, the time step is restricted by 

the Courant-Friedrichs-Lewy (CFL) stability condition 

[2]. When a small spatial step is required for fine 

geometrical details, the time step has to be small so that 

the simulation time is too long to be accepted. To 

overcome the CFL stability limit of the FDTD method, 

some unconditionally stable FDTD algorithms including 

the alternating-direction-implicit (ADI) FDTD [3], 

Crank–Nicolson (CN) FDTD [4], split-step FDTD [5] 

and locally one-dimensional (LOD) FDTD [6] have been 

introduced.  

Recently, the current density convolution CN–FDTD 

(JEC-CN-FDTD) method has been successfully applied 

to one-dimensional (1-D) unmagnetized plasma medium 

based on incomplete Cholesky conjugate gradient (ICCG) 

method [7]. In this paper, the JEC-CN-FDTD method is 

extended to simulation 1-D anisotropic magnetized 

plasma without using ICCG method. A main advantage 

over the method in [7] is that the CN equations are solved, 

as naturally expected, by two tridiagonal algorithms, 

requiring neither preconditioners, nor iterative solvers, to 

deal with the implicit equations. And the proposed 

difference iterative formulations of anisotropic 

magnetized plasma eliminate the CFL stability constraint 

based on the CN method. Therefore, the selection of time 

step is not limited by the CFL stability condition. Under 

the sufficient accuracy of the calculation, the number of 

the simulation steps can be reduced with increasing the 

time step, which can lead to the substantially decline of 

the computing time. The high accuracy and efficiency of 

the proposed JEC-CN-FDTD algorithm are confirmed by 

computing reflection and transmission of a magnetized 

plasma slab. Comparing the JEC-CN-FDTD method with 

the conventional JEC-FDTD method [8] and analytical 

solutions, the results show that the proposed formulations 

can reduce most of computing time, perform stably and 

facilitate computer programming, but retain its accuracy. 

II.  FORMULATIONS 

In anisotropic magnetized plasma medium with 

collisions, supposing that the external static magnetic 

field is parallel to the z axis, the Maxwell’s component 

equations are written as: 
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where ( , )E x y    is the electric field intensity in the   

direction, H  is the magnetic field intensity, J  is the 

polarization current density, 
0  and 

0  are the 

permittivity and permeability coefficient of free space, 

respectively. The constitutive relationships of 

polarization current density 
xJ  and 

yJ  are given by  
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where v  is the electron collision frequency, 
p  the 

plasma frequency, and 
b  the electron gyrofrequency. 

The plasma medium parameters are constant that do not 

vary with time and anisotropy. From (5) and (6), it is 

obvious that 
xJ  and 

yJ  are coupled. Therefore, the 

update equations for two components of polarization 

current density need to be solved simultaneously. 

According to the conventional JEC-FDTD method 

presented in [8], (7) and (8) can be obtained as 
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where t  is the time step, k is the spatial location index. 

The CN scheme is used in spatial partial differential 

(1)-(4). For example, (1) and (4) can be formulated as 

follows: 
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where z  is the space step in the z direction. 

It is noted that the discrete electric and magnetic field 

components are coupled implicitly, which leads to a huge 

sparse matrix to be solved. To decouple them, 

substituting (10) into (9) and after some manipulations, 

an implicit update for 1n

xE   is obtained from 
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By the same procedure, 1n

yE   and 1n

xH   can be updated as 

follows: 
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It is clear that the left-hand sides of (11) and (12) form 

two tri-diagonal matrix which can be solved for 1n

xE   and 

1n

yE 
 easily. And, 1n

xH  , 
1n

yH 
, 1/2n

xJ   and 1/2n

yJ   are 

updated explicitly. It is remarkable that, because of using 

the JEC method, polarization current density xJ  and yJ  

are calculated at half integer time step (n+1/2), which 

makes entire update formulations and the computer 

programming simple. 
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Ⅲ.  NUMERICAL STUDY 

A numerical example that the electromagnetic wave 

propagates through a magnetized collision plasma slab is 

used to validate the proposed JEC-CN-FDTD 

formulations. The parameters of the plasma are taken as 
92 28.7 10p    rad/s, 111.0 10b   rad/s, and 

920 10v   rad/s. The thickness of the plasma slab is 

15mm, and the incident wave used in the simulation is a 

differential Gaussian pulse with the peak frequency of 50 

GHz.  

To improve the accuracy and decrease the numerical 

dispersive error, CPW =100 is chosen, where CPW  

denotes the number of the cell per wavelength. In the 

numerical example, the CFLN 6  is chosen, which is 

defined as CFLN FDTD

CFLt t   , where FDTD

CFLt  is the 

maximum stability limit of the conventional FDTD 

algorithm, in this test, 0.1FDTD

CFLt  ps. It is noted that 

time sampling precision is high enough because of 

CPW/CFLN>12 . The computational domain has 2000 

cells in the z direction. The space step is 30 mz   , 

the plasma slab occupies 500 cells in the middle of the 

FDTD domain, and the rest is free space. Eight-cell 

perfectly matched layer (PML) is used at two 

terminations of the space to eliminate unwanted 

reflections [9]. In this test, the simulation is carried out 

for the first 1.6384 ns. 

As shown in Figs. 1-4, the magnitudes of reflection 

coefficients and transmission coefficients for RCP and 

LCP waves are computed using the proposed JEC-CN-

FDTD method with different CFLNs. At the same time, 

these results obtained from conventional JEC-FDTD 

method [8] and analytical solutions are given. 

Fig. 1 and Fig. 2 show that the reflection coefficients 

from the proposed JEC-CN-FDTD formulations with 

different CFLNs keep a high accuracy, which is close to 

the analytical solutions. When CFLN = 6, there is a tiny 

deviation at high frequency, but this deviation is 

acceptable.  

Fig. 3 and Fig. 4 show that the transmission 

coefficients from the proposed JEC-CN-FDTD algorithm 

with different CFLNs follow the analytical solutions 

closely at total interesting frequency range. 

Fig. 1-4 confirm that the proposed JEC-CN-FDTD 

formulations for anisotropic magnetized plasma are valid 

and unconditionally stable, and its simulation results with 

different CFLNs keep in good agreement with analytical 

solutions. 

As shown in Table I, it is obvious that the JEC-CN-

FDTD method occupies larger memory than the 

conventional JEC-FDTD method in [8], but the JEC-CN-

FDTD method saves more and more time with the 

increasing of CFLN value when CFLN  2 at the 

acceptable cost of the memory. Especially, this method 

saves more than 76% time when CFLN=6. In this test, a 

PC with Inter(R) core(TM) i7 CPU @ 2.6GHz and 

8GB(DDR4 2133MHz) memory is used. 
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Figure 1.  RCP reflection coefficients versus frequency obtained from 

the proposed JEC-CN-FDTD formulations with different CFLNs, the 
conventional JEC-FDTD and analytical solution for anisotropic 

magnetized plasma. 
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Figure 2.  LCP reflection coefficients versus frequency obtained from 
the proposed JEC-CN-FDTD formulations with different CFLNs, the 

conventional JEC-FDTD and analytical solution for anisotropic 
magnetized plasma. 

Ⅳ.  CONCLUSION 

In this paper, the JEC-CN-FDTD algorithm for 

anisotropic magnetized plasma is proposed. The 

numerical example shows that the proposed algorithm 

maintains unconditional stability and the time step is not 

limited by the CFL stability condition. In addition, the 

proposed algorithm can keep a high accuracy and 

consume very little time. 

TABLE I.   
TIME AND MEMORY USED BY CONVENTIONAL JEC-FDTD AND JEC-

CN-FDTD METHOD WITH DIFFERENT CFLNS 

 
JEC-

FDTD 

JEC-CN-FDTD 

CFLN=1 CFLN=2 CFLN=4 CFLN=6 

Time(s) 40.50 53.81 26.22 15.14 9.64 

Memory(M) 82.564 93.288 93.120 92.580 92.376 

mailto:CPU@2.6GHz
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Figure 3.  RCP transmission coefficients versus frequency obtained 

from the proposed JEC-CN-FDTD formulations with different CFLNs, 
the conventional JEC-FDTD and analytical solution for anisotropic 

magnetized plasma. 
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Figure 4.  LCP transmission coefficients versus frequency obtained 
from the proposed JEC-CN-FDTD formulations with different CFLNs, 

the conventional JEC-FDTD and analytical solution for anisotropic 
magnetized plasma. 
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